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SECTION 1

INTRODUCTION

In time distributed multiple access (TDMA) co.unication networks

it is often desirable to reach a large co munity of users through the

hroadcast transmission of information. Due to the TDMA architecture,

those units participating in the transmission or reception of

information packets are restricted from participating in other

communication activities (on other channels) during that period. As a

result of this the utilization of many relay units in a broadcast tree

wastes a considerable quantity of system capacity. It would therefore

be desirable to reduce, or minimize, the number of relay units used in

a broadcast network. From this we can define the following problem to

be considered:

Problem: Minimize the number of broadcast transmissions required

to disseminate a packet of information to a community of users on a

multi-relay TDMA network so that the relay delay to reach any user in

the community is minimal.
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The algorithm schema presented in this paper will solve this

problem.

In addition to minimizing the total number of relay transmissions

required to reach some community of users, it is also important that

the information be disseminated in a timely manner. Thus it is

desirable to minimize the delay, therefore to minimize the number of

relay transmissions required to reach any member in the community. It

is this objective that stipulates that the shortest path (with respect

to relay "hops") from the originator to every member of the user

community be known in advance. The algorithms presented are intended

to be processed by a network control facility which has full knowledge

of system connectivity.

Two algorithms are utilized in the schema where algorithm 8 is

embedded in algorithm a.

The definitions needed to support a more formal representation of

the problem will be given in the next section. The remainder of this

paper will consider the problem and solution techniques in graph (set)

theoretic terms with analogies to the communication problem previously

defined.

6



SECTION 2

PROBLEM DEFINITION

In this section we will present a formal (mathematical) definition

of the communication problem given in the introduction to this paper.

A number of other definitions will be required for the statement

of the formal problem.

Definition 1: A graph G (V, E) is an ordered pair of disjoint

sets V, E such that EC V2 and V # 0, where V is a set of vertices

and E a set of edges.' [Bollobas, Pg xiiiJ

An edge, which is an element of set E, is denoted by its

endpoints; thus if an edge connects vertices x and y it would be

denoted as edge iy. We can also state then that edge iy is adjacent

. - " •, . . .. ffi , , ' __ W - . . . ..7
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to vertex x and to vertex y and if iy E E we can then state that x

and y are adjacent vertices. Additionally we may stipulate th -t an

edge be directed, hence giving an orientation to the vertices that

constitute its endpoints. A directed edge, XT9 would have a source x

and a terminus y. This implies that if G (V,E) represents a network,

then xy is a branch in the network along which a flow may pass from x

to Y but not from y to x. A directed edge xy in a graphical

representation of a communication network would imply that y could

hear x's transmissions but x could not receive messages transmitted by

y.

Definition 2: A subgraph G' V', E') of some graph G (V, E) is a

graph in which V' C V and E'CE.

From this definition it is clear that every graph G (V, E) has at

least one subgraph.

Definition 3: A graph G(V,E) is said to be connected if for every

vi,vj c V (i#j) there exists at least one path(set of adjacent

vertices) from vi to vi.

8



Definition 4: A spanning subgraph G(V, E), on a vertex set V'CV

of G (V, E) is a graph such that VC- V and E 4 E, where G (V, E) is

connec ted.

Recall that the cardinality of a finite set of distinct elements S

is the measure of the discrete elements in the set. Thus if some set S

contained n discrete elements then cardinality [S] n

Definition 5: A minimal spanning subgraph C (V,E) on a vertex set

V CV is a subgraph of G (V, E) where V09 V and 4; E such that G(V,E)

is connected and that there exists no G(V,E) where

and where G(V,E) satisfies the sane conditions on V.

Definition 6: Given a vertex v. EV of a graph C(V,E) the
1

outdegree ,d +(v) is a measure of the number of directed

edges v (j # i) in the set of edges E.

9
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Definition 7: Given a vertex vieV of a graph G(V,E), the

indegree , d-(v.) , is a measure of the number of directed edges

vjv i (ij/j) in the edge set E.

We will now define another operator of measure on the sets V,E

defining a graph G(VE).

Definition 8: Let 9 IG(V,E] represent the number of vertices

vi 6V where d (vi )> 0 and d+Cv >0. More formally:

£[G(V,E)] - card[ I viEVj d+(v ),d-(v )> Ol0

The shortest path from any vi.E V to any vj V (vi Pi vj)

shall be denoted as Pij. Pij shall then be an ordered set of

vertices Vi,...vk, vI ..... vj where the existence of any

two consecutive vertices Vkvl in Pij implies that a directed

edge vkvl is contained in the shortest path Pip"

Let G(V,E) represent a comunications network where V is the set

of terminals in the network, then any edge vv j E E implies that

v can receive transmissions from vi.

10



Let S denote the source (originator) in a given broadcast network

and define a subgraph G(VE) as the subgraph showing the union of the

shortest iaths (defined by vertices ) from S to all users in a

community of interest, V and all adjacent edges to V : E.

=GvE vie H VO P5  Vv~ vi)

We can state the comunication problem presented in the previous

section as:

Problem * Find the minimal spanning subgraph G(7Vi) of the

subgraph G(V,E) on the vertex set V0 US "

We now add the constraint that in Z(V',E) the path P . from s to

any v. E V° must be such that

card inality j[ Ps]I = cardinality I P5 ]j
thus retaining the minimal distance from any v. C V° to the source

defined by the set of shortest pathsI P Vv. E Vo given on

Finally we state the condition of optimality: G(V,E) is such
that minimal spanning graph G(V,) which satisfies the same

conditions and where:

11



The full problem is given below.

Problem 02: Find MVZ) such that:

1. V° C-

2. cardinality Isj]= cardinality I psj] V vE V0

where Psi is the shortest path from S to vj defined on G(V,E)

3. G(V,) is a minimal spanning subgraph of G(V,E) on the vertex

qet IyOu SJ

. ( which satisfies the constraints 1,2,3 and is such that

Q [ AAG(VE < D 1(VE)]

Note that if any vj is deleted from some set V, then all edges

vjvk (vk / vj) are no longer contained in the set E. Thus if

V - V-v. then E E - v v k Vkvj vk

Raving defined the problem we can present the algorithm schema to

solve it in the following sections.

12



SECTION 3

ALGORITHM O

This algorithm is designed to solve the problem *2 stated in the

previous section. If not for the constraint:

card PIsj fi- card [Psj JVjvjEV

an existing class of algorithms could be applied on G V ) to

obtain a minimal spanning tree. Algorithm o preserves the shortest path

characteristics on G (V ,E ) hence is not contained in the general

class of minimal spanning tree algorithms.

This algorithm (algorithmat) utilizes another algorithm within its

structure, which will be defined in the next section of this paper.

What algorithm Pidoes is to find the minimal vertex cover on a

bipartite graph. For the present we will only present one definition to

explain the result of algorithm 8 when applied to some graph.

Definition A bipartite graph G (Y, X ) is a graph where any

viv j E E is such that vi E X and vj Y and X nY-i , X U Y-V

Algorithm P when applied to a bipartite vertex set (Y,X) finds

xOC X where e is such that there is at least one vertex in X

adjacent to any vertex in Y. Thus if X is such that X" where

card [x"] < card rX]

where X" satisfies the same conditions, k* is called

minimal cover of Y.

13



We say algorithm finds a reduced cover X# because in its present

form there exists a small class of examples where X4is not a minimal

cover. Algorithm P is therefore not optimal by definition.

In the formulation of algorithmO that will be presented, algorithm 6

will be utilized in the form of an operator. The step

Xi~l m aigo J9 [1Y xi

indicates then that XiI is the reduced cover of the bipartite graph

G(Y, Xi ) generated by algorithm .

We need the following definition.

Definition: F(v i ) is the set of vertices adjacent to some

vertex vi. Rvi, X) is the set of vertices in X adjacent to v i .

F(YX) is the set of vertices in set X adjacent to the vertices in set Y.

The following information must be known prior to executing

algorithm a.

1. Adjacency Matrix of the graph G (V, E)

2. The source S, the set V
0

3. The set of shortest paths p-P s jivjE V 0

14



We must define two set operators, one of which will be utilized within

the structure of algorithm C1

Operator @ : If Pi is an ordered set of vertices then

t(Pij v.) is the position of vk in the ordered set Pij. Thus in

the ordered set Pij (vi A, B, C, vj), O(Pij, A) - 2

Operator T : If Psi is the set of vertices defining a shortest

path from a to vj on some graph G, and P is the set of sets

PsP V vie VOIthen

T(Pjn) = I jviE Psj P(Psj, vi) = n1 VP ejE-P

The variables utilized in the structure of algorithmea are given

below.

0 : The length of the longest path in P.

Bi_ 1 This constitutes the set of vertices that are elements of

V0 which have a shortest path from the source of length i-l.

A.: This is th set of vertices at iteration (relay level) i which

must be covered by the set T(P, i-1) U Bi.

Zi_1  This is the set of vertices not in the set B. that will

partially constitute the minimal cover of A.

1 5



T.: The set of terminals who are to relay a message at level i1
(definition applies to communication example only).

Ri_ 1 " The set of terminals who are to receive a message

transmitted from the terminals in the set T_ (definition applies to

coumunication example only).

Two formulations of algorithm a will be presented. The first

algorithm ca 1 will solve the comunications problem stated in the

introduction by specifying (using Ti, Ri_ i ) the terminals who are to

receive and transmit at every relay level.

Algorithm a 2 is less complex in its structure and solves the

problem 0 2 given in the previous section.

Prior to the formal presentation of the two algorithms, a less exact

formulation of algorithm a1 will be given.

16



Algorithm I

We wish to solve the communication problem stated in the first

section. Our ob~ective is to minimize the number of terminals that must

transmit and receive at any relay level such that a packet of information

transmitted from the source will reach a prespecified comnunity of

interest, V0 , with minimal delav.

0. Based upon knowledge of P, the set of shortest paths on the

network, find the length of the longest of the shortest paths

from the source to a terminal in the set V° . Let 0 equal this

distance.

1. Set the iteration counter i to 0

Compute the set Ao as the set of terminals in V0 that have

shortest paths to the source of length 0 .

3. Determine the set Bi_ , the set of terminals in V0 whose

shortest paths to the source are of length i-I.

4. Apply algorithm P to find the minimal cover of the set of

terminals in Ai that are not covered by the set of terminals

in Bi.

17
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5 Find the minimal cover of the terminals in F(Bi_, Ai)

the set of terminals in Ai that are covered by the set B

(but not necessarily minimally covered). The minimal cover will

be a subset of the set Bi 1. It is important to note that

although every terminal in Bi_l must receive an information

packet we wish to minimize the number of terminals that must

retransmit it . This is why we apply algorithm .8 in this step.

6. Determine the union of the set of terminals that must transmit

a. relay level i which are in V ° and those that must transmit

at this level and are not (these are the set that must complete

the minimal cover of Ai). Call the set comprising this union

T..

7. Determine the union of B. and those terminals not in B

that complete the minimal cover of A1 . This is the set of

terminals that must receive a packet of information at relay

level i-I. Call this set R i_.

8. Let the set Ai 1 be defined as the set Ri_ 1 and let this

constitute the set of terminals that must be covered in the next

iteration of the algorithm.

9. Decrement the counter (set i-i-l) and if i-2 after being

decremented then STOP . Otherwise go to step 3 and continue.

18



Algorithm Of1

0. OMax[ card [pJ ,Iv~ f vj E v 0
1. i-

2. Av. = o card [8] e

3. Bj 1 i- jI v v 0 V,card aI- l

4. Algorithm 6[A-(iA T(P,i-l) - B il -I

5. Algorithm 1-B - At), Bj1 =-

6. T.i=Z. iIU Y.

7. R i- i i- i -

8. A i-i Zi-I U B-

9. i-i-I, if i >2 go to 3

19



Algorithm a

0. 0Max card ] v

i. i ,.,:~[pi vi ,+l.
2. AO- IVj vi V E V0,card p O

3. Bi ~V j V. e o card [I~ p sj

4. Algorithm.i Ai- F (Bi_1 , Ai)),(T(P, i-1) -Eu-)] z i-l

5. A i- 0 Bi_1  U i_ 1

6. ii-l, if i> 2go to 3

20



The computational complexity of algorithms al 1' 0 2 is of

order (V4 ) based on the argument that algorithm . has complexity

O(V ). More exactly the complexity of algorithms of, and & 2 is

6 [Order(algorithm )

where 9 is the length of the longest shortest path in the network. In

reality 9 << V, thus we can realistically say 9 is relatively

constant with respect to V, therefore for practical purposes we can say

the complexity of algorithms a 1 and a 2 is of order(V 3).

Algorithm 6 is polynomially bounded thus showing an improvement over the

exponentially bounded algorithms previously developed for solving minimal

cover problems.

21



SECTION 4

ALGORITHM .8

It was shown in the previous section that algorithm 18, required to

solve the minimal cover problem, is embedded in the structure of

algorithm d. In the communication example presented, algorithm

would determine the minimal number of terminals at relay level i that

would have to transmit a packet so that every terminal at level i + 1

would receive a transmission. The related problem in graph theory is

known as the minimal vertex cover problem.

INTRODUCTION

The problem of finding the minimal cover set Xe C X in a bipartite

graph G (X,Y) has been characterized as Steiner's second problem
(2 HAKIMI I). In the past a number of algorithms have been developed to

solve this problem but none have achieved a polynomial bound. Previous

attempts at solutions (3BERGE, 4HAKIMI) have been based on Boolean

techniques and require an exponential number of computations. A second

approach, utilizing 0-1 integer programing has been attempted but with a

similar theoretic bound and is only applicable to small problems.

In this paper we will present an algorithm to solve the reduced cover

problem with a polynomial number of computations. The solution to this

problem (4HAKIMI) is believed to hold the key to a variety of cover

problems posed by Steiner and known as problems 3, 4, 5. The

interrelationship between these problems has been shown by Hakimi.

22



Algorithm can be claimed only to solve Steiner's second problem

heuristically because in its present form it fails to find an optimal

(minimal) cover for a small class of counterexamples. Even in the

heuristic form it is of significance in the communications field as in

all cases it will find a near optimal cover.

The algorithm will first be presented informally and vill, later in

this section, be given in a more exact form.

No definitions beyond those presented in the previous section will be

necessary for either formulation of this algorithm.

23
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ALGORITHM 8

*Assume we wish to find a minimal cover :XC C X for a set of

vertices Y in a bipartite graph G (X,Y).

0. Initialize the working sets to be utilized in the algorithm.

Set: Y*= Y

X* fX

1. Find which vertex in Y* has the fewest adjacent vertices in X,

let this be -*. If more than one exists choose one at random.

2. Remove '* from Y*

3. If 3 * has greater than one vertex adjacent to it, then go to

step 3B else do 3A.

3A. - Let vertex that is adjacant to v*, call this z, enter the

minimal cover set X4, remove it from X*.

- Let the set of vertices F(z) be removed frwn Y*

- Go to step 4.

3B. This step is selected only if -* has greater than one vertex in

X* adjacent to it. In this case we apply a weighting scheme to

determine which vertex in F(3*) should be selected for the

minimal cover set.

24



Assign a weight to every xi r F((*) according to the following

scheme:

Let xi(c), the weight of xiC F (3*) be equal to the sum (for all

yj G F(xi)) of:

(Card Hx*- card[ F(y.) i
- Thus xi is given a value according to how many vertices in Y* it

is adjacent to and inversly proportional to the number of vertices in X*

each of these are adjacent to.

- Select the vertex in F('*) with the maximal weight. If more

than one of the vertices have the same maximal weight, select one at

random. Let this vertex be z.

- Go to 3A.

4. If Y* =% then all vertices are covered with K STOP, else go

to 1.

*XO is a minimal cover of Y

As can be seen by the description of algorithm 6 given above this

technique relies on a weighting scheme. It has a worst case complexity

V3 if the degree of connectivity of each vertex is computed in advance

and updated in each step; V3 preprocessing steps required in advance to

compute degree of connectivity, V steps required to update at each

iteration. The total complexity of algorithm P is 2 V3 where

V ama.[ card [X] ,card[]]

therefore complexity of the algorithm is:

0 v3 ).
25
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We now present the formal definition of algorithm

Algorithm,#

0. Y* = Y, X* = X, x 0

I. 3* - any y, e Y* card IF(yj)] -5 card jF(yk)1  Vj~k

2. Y* = Y* - 7*

3. If Card [ F(y*) ] > 1, go to 3B, else let z- ( *), go to

3A

3A. Y*y*. [ r( FC3)) ,* - f('*)
X° X° + z go to 4

3B. Vx. C (y*),

x C c) =( card [x] -card [rc-.)]
Yj Gj(x i )

z = x cI X(c) 2!xj(c) V i , (X1 i, ) EFy*

if cardz]>l select one element from z and let that element comprise z

1 Go to 3A

4. if Y* = e STOP, (X°  solution set), else go to 2

26



SECTION 5

EXAMPLE UTILIZING ALGORITHM el

Presented in this section is an example to demonstrate the application

of algorithm f1. This will solve the communication problem stated

in Section 1.

The network presented in this example was generated randomly.

The objective of algorithm a when applied to the network was to

minimize the number of terminals transmitting an information packet

such that every unit in a community of interest receives the packet in

minimal time.

The network contains 50 units, 23 of which are members of a

prespecified community of interest.

0

Call this set V . If we label each terminal in the network with a

number from 2 to 50, our community of interest can be defined as the

following set:

= 0 8, 15, 17, 19, 21, 22, 23, 25, 27, 28, 30, 31, 32, 33, 38, 39,

40, 41, 44, 45, 47, 48, 49]

S is the source terminal from where the transmissions originate that

the terminals in V° wish to monitor.

Figure I shows the example network where an edge between two vertices

represents a bidirectional communications link.

27
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Figure 2 shows the subgraph induced by the shortest paths from the

source to all other terminals in the network. These paths were

computed usinglbijkstra's algorithm, an algorithm commonly used in

this application.

Below, algorithm al is applied to the network to produce a minimal

broadcast structure.

Algorithm a1 is shown in each step of its structure through several

iterations while algorithm .8 is stepped through once.

Iteration I (algorithma 1 )

0. 0=9

1. i=9

2. A9 =[45, 47]

3. B8 =[38, 39, 40, 44, 48] (This set defines the vertices in V° ,

the community of interest which are nine relay levels away from the

source on their respective shortest paths).

4. AlgorithmfB[ A9 -FC(B8 , A9 ),IT(P, 8) - B 8] = 8

A A9 -F(B08, A 9) =14,47 ]- [] = [45]

T, 8) - B8  = [38, 39, 40, 43, 44, 46, 48 -

T~p, ) - 38, 39, 40, 44, 48] - [43, 46]

Algorithmf [[45] ,[ 43, 46 ]] [43]-8
(Z8 is the set of units not in B8 that must transmit to relay

level 9 in order to reach all units in A9 )

29
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5. Algorithm [,(B8 , A,), B8] =Y

Algorithm P [ [47] , [38, 39, 40, 44, 48] ]-i [48]- 8

(Y8 defines the set of terminals in B8 that must transmit to

relay level 9)

6. T9 = Y8 U Z8 = [43, 48] (this constitutes the set of terminals

that must relay the information at level 8 for terminals at level 9

to receive)

7. RS= B8 U Z8  = [38, 39, 40, 43, 44, 481 (this constitutes

the set of terminals which must receive messages at relay level 8)

8. A8 = 8  Z8 ff [38, 39, 40, 43, 44, 481

9. i = i-I i = 9-1 =8, 8 >1 => go to 3

This starts iteration 2. Figure 3 shows the communication links

selected thus far by algorithme ig.
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Iteration 2

3. B7 =132, 41, 49]

4. Algorithm .8 [A8 -F(B 7 , A8 ), ((P,7) - B7] 7

(in this case 1-B7,A8 I8, 39, 40,]44, 48] =A 8)

Algorithm 6[,T(P,7) - B7 )]= 0 ' -

5. Algorithm 8 [ rF(B 7 , A8 ), B71 -Y

Algorithm. 39, 40, 481 j[32, 41, 49

L 141, 49 ] Y7

6. T8  41, 49 0 41, 49]

7. R7 =32, 41, 49]

8. A 7 =32, 41, 49]

9. i 8-1 go to 3

Figure 4 shows the links selected by algorithm a 1 in the first and

second iterations.

Figure 5 shows the links selected in the first through third iterations

of algorithm I"
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Iteration 4 (algorithm a 1)

3. B5 s[15, 17, 19, 21, 23, 25, 27, 28]

4. Algorithmp[ A6 - r (B5, A6 ), T(P, 5) - B5  =z 5

A6 = 22, 30, 31, 33, 50]

F(05, A6  = 1[22, 23, 30, 31, 33]

T(P,5) =[ 15, 16, 17, 19, 20, 21, 23, 25, 26, 27, 28, 35]

Algorithm 8 [ []501, [10, 20, 26, 35] [35] = z 5

5. Algorithm $ [](B 5 p A6), B5]

Algorithmf [[22, 30, 31, 33] 9 115, 17, 19, 21, 23, 25, 27, 28]]

Algorithm will be applied below to find the minimal cover:

x [15, 17, 19, 21, 23, 25, 27, 28]of the set [22, 30, 31, 33]

Algorithm .8

0 Y* = 22, 30, 31, 33

X* - 15,17, 19, 21, 23, 25, 27, 28

xo 0 0

1 * 22
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2 Y*= Y- [2] =[30, 31, 33]

3 card [(Y*] 1 go to 3A

Fy)=z= [19]

3A Y = 122,30, 31, 33] [2 2] = [30, 31, 331
X*-=[15, 17, 19, 21, 23, 25, 27, 28] - [19

1] [, 17, 21, 23, 25, 27, 28]

4 Y* = 0 go to I

I Y*-- [30]

2 * =  15 [30] [31, 33]

3 = f27] card [27] =1

Z=[27] g o3

3A Y* = [30, 31, 33] -F-(27) = [30, 31, 33]

[30, 31, 33J

X= [i15, 17, 21, 23, 25, 27, 28] _ [27]

X° = [19, 27]

4 Y* STOP, X0 is a minimal cover

(end of algorithmi)
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5. 4Algorithm (B 5, A 6), B5] 19, 27]

6. T - [35 [19, 27] - [19, 27, 35]

7 . R5= [3 5].-U 15, 17, 19, 23, 25, 27, 28]

= [15, 17, 19, 23, 25, 27, 28, 35]

8. A5 = [15, 17, 19, 23, 25, 27, 28, 35]

9. i = 6-1 = 5 => go to 3

Figure 6 shows the links selected after the first through fourth

iterations of algorithm 1

Figures 7, 8, 9, 10 show links selected through iterations 5, 6, 7, and 8

of algorithm a1 .

Figure 11 shows the final minimal broadcast networks produced by

algorithm t1 .
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Table I shows the transmissions by relay level in the broadcast network

given by Dijkstra's algorithm compared to those in the broadcast network

generated by algorithm al,

TABLE 1

Performance of Algorithm a 1

Relay Dijkstra Algorithm o % Difference

Level Trans. Rec. Trans. Rec. Trans. Rec.

0 1 2 1 1 0 -50

1 2 3 1 3 -50 0

2 3 5 3 3 0 -40

3 5 6 2 3 -60 -50

4 6 11 3 8 -50 -27.3

5 5 6 3 5 -40 -16.7

6 2 5 2 3 0 -40

7 4 6 2 6 -50 0

8 2 2 2 2 0 0

Totals 30 46 19 33 -36.7 -28.3
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It is clear in this example that algorithma 1 produces a dramatically

reduced broadcast network compared to that generated by Dijkstra's

algorithm while maintaining the minimal delay characteristics of

Dijkstra's results.
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